1/1*2+1/3*4+1/5*6+...+1/49*50=1/26+1/27+1/28+...+1/50
( 1/1*2 + 1/3*4 + 1/5*6 +........+ 1/49*50 ) : ( 1/26 + 1/27 + 1/28 +.......+ 1/50 )
Chứng minh rằng:\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{49}+\frac{1}{50}=\frac{91}{50}-\frac{97}{49}+\frac{95}{48}-\frac{93}{47}+.....+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}=1\)
chứg minh 1/27+1/28+1/29+...+1/50=1-1/2+1/3-1/4+...+1/49-1/50
C/m : 1/26+1/27+1/28+...+1/50=1-1/2+1/3-1/4+...+1/49-1/50
Chứng Minh Rằng :1/26+1/27+1/28+...+1/50=1-1/2+1/3-1/4+...+1/49-1/50
Chứng minh rằng: 1/26+1/27+1/28+...+1/50=1-1/2+1/3+1/4+...+1/49-1/50
chứng tỏ
1/26 + 1/27 + 1/28 + ... + 1/50 =1 - 1/2 + 1/3 - 1/4 + .... + 1/49 - 1/50
Chứng minh rằng : 1/26+1/27+1/28+.......+1/50=1-1/2+1/3-1/4+.....+1/49-
1/50