Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^2}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{1}{2^7}\)
E= 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256
2E = 2 ( 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/128 + 1/256 )
= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> E = 2E - E
= (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 )
= 1 - 1/256
= 255/256
k nhá, thanks
\(E=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(E=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(E=1-\frac{1}{2^8}\)
\(E=1-\frac{1}{256}\)
\(E=\frac{255}{256}\)