làm thế nào vậy bạn .! bạn bảo mình với ak
làm thế nào vậy bạn .! bạn bảo mình với ak
Đường tròn (O;R) có hai dây AB, CD của đường tròn vuông góc với nhau tại P (không trùng O).
Biết \(PA^2+PB^2+PC^2+PD^2=36\) Vậy R = ?
ai làm hộ mình với
cho đường tròn tâm O bán kính R, trong đường tròn (O) lấy điểm P cách tâm O một khoảng bằng R/2. qua P kẻ hai dây AB và CD vuông góc với nhau(A,B,C,D là các điểm nằm trên đường tròn).tính tổng AB^2+CD^2 theo R
Chođường tròn (O) đường kính AB cố định .Trên tia đối của AB lấy điểm C sao cho AC=R. Qua C kẻ đường thẳng d vuông góc với CA. Lấy điểm M bất kì trên đường tròn (O) không trùng với A,B.Tia BM cắt đường thẳng d tại P.Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N, tia PA cắt đường tròn (O) tại điểm thứ hai là Q.CMR: PC song song với NQ.
Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ
b) CH . HD = HB . HA
c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
Cho đường tròn(O;R) và điểm M nằm ở miền trong đường tròn. Qua M kẻ hai dây cung AB và CD vuông góc với nhau tại M. Chứng minh:
a)MA^2 + MB^2 + MC^2 +MD^2=4R^2
b)Tổng AB^2 + CD^2 khi các dây AB và CD thay đổi và luôn vuông góc với nhau tại M
cho đường tròn (O,R) hai đường kính AB và CD vuông góc với nhau . Gọi E là điểm thuộc cung nhỏ BC ( E không trùng với B,C) tiếp tuyến của đường tròn (O,R) tại E cắt đường thẳng AB tại I.Gọi F là giao điểm của DE và AB , K là điểm thuộc đường thẳng IE sao cho KF vuông góc với AB) a) chứng minh tứ giác OKEF là tứ giác nội tiếp b)chứng minh góc OKF bằng góc ODF c)chứng minh DE nhân DF bằng 2 nhân R bình phương d)Gọi M là giao điểm của OK vafCF ,tính tan góc MDC khi góc EIB bằng 45độ
Cho đường tròn (O;R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 2 cm,IB = 4 cm. Tính khoảng cách từ tâm O đến mỗi dây
Bài 4(3 điểm). Cho đường tròn (O; R), đường kính AB. Lấy điểm C bất kỳ trên đường tròn (O; R) (C không trùng A; AC < BC). Qua C kẻ dây CD của đường tròn (O; R) vuông góc với đường kính AB tại I. Lấy điểm E sao cho I là trung điểm AE. Tia DE cắt đoạn thẳng BC tại F. Gọi K là trung điểm của BE. 1) Chứng minh tam giác BCD cân. 2) Chứng minh AC I/ DE và chứng minh F thuộc đường tròn tâm K đường kính BE. 3) Chứng minh IF là tiếp tuyến của đường tròn tâm K đường kính BE. 4) Lấy điểm M trên đoạn thẳng OC sao cho OM = CI. Chứng minh khi điểm C di chuyển trên nửa đường tròn (O; R) không chứa điểm D (C khác A, B) thì điểm M chạy trên một đường tròn cố định.
Cho đường tròn (O:R) đường kính AB cố định . Trên tia đối của AB lấy điểm C sao cho AC=R . Qua C kể đường thẳng d vuông góc với CA . Lấy điểm M bất kì trên đường tròn (O) không trùng với A,B. Tia BM cắt đường thẳng d tại P. Tia CM cắt đường tròn (O) tại điểm thứ hai là N tia PA cắt đường tròn (O) tại điểm thứ hai là Q
a/ Cm A,C,P,M cùng thuộc 1 đường tròn
b/Tính BM.BP theo R
c/cm PC//NQ