Cho hình thang ABCD (AB//CD). Dựng ra ngoài hình thang các tam giác ADX và BCY lần lượt vuông cân tại X và Y. I là trung điểm cuae CD. Lấy điểm M nằm trên trung trực CD và ở bên ngoài hình thang sao cho \(MI=\frac{1}{2}AB\). Chứng mỉnh rằng tam giác MXY là tam giác vuông cân.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
Cho tứ giác lồi ABCD có hai đường chéo AC=BD .Gọi M,N,P,Q là trung điẻm của AB, BC,CD,AD.
A, chứng minh \(MP\perp NQ\)
B,dựng các tam giác vuông cân ADE,BCF
CMR: \(MN\perp EF\)
C,Dựng ngoài các tam giác cân ABX,BCY,CDZ,DAT
CMR:\(XZ\perp YT\)
Cho tứ giác ABCD có hai đường chéo bằng nhau. Về phía ngoài của tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N tương ứng). Gọi P, Q, E, F lần lượt là trung điểm của AD, BC, AB, CD. Chứng minh rằng:
a) Tứ giác PEQF là hình thoi;
b) PQ và MN vuông góc với nhau.
Giup mik voi! Mik can gap! Cam on mn
Cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABCD và ACEF. Gọi Q, N
lần lượt là giao điểm các đường chéo của ABCD và ACEF; M, P lần lượt là trung điểm BC
và DF. Chứng minh rằng tứ giác MNPQ là hình vuông.
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là tâm các hình vuông có cạnh AB, BC, CD, AD dựng ra phía ngoài tứ giác.
Chứng minh rằng :
a) Tứ giác EFGH có 2 đường chéo bằng nhau và vuông góc với nhau.
b) Trung điểm các đường chéo của các tứ giác ABCD, EFGH là đỉnh 1 hình vuông.
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là tâm các hình vuông có cạnh AB, BC, CD, AD dựng ra phía ngoài tứ giác.
Chứng minh rằng :
a) Tứ giác EFGH có 2 đường chéo bằng nhau và vuông góc với nhau.
b) Trung điểm các đường chéo của các tứ giác ABCD, EFGH là đỉnh 1 hình vuông.
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
cho tứ giác ABCD có AC = BD . vẽ về phía ngoài tứ giác các tam giác cân ABM cân tại M, CDN cân tại N sao cho \(\widehat{BAM}=\widehat{DCN}\).
. gọi E,F lần lượt là trung điểm các cạnh AD,BC. cm : EF \(\perp\)MN