∃ x ∈ R : x = - x (đúng)
Phủ định ∀ x ∈ R : x ≠ - x (sai)
∃ x ∈ R : x = - x (đúng)
Phủ định ∀ x ∈ R : x ≠ - x (sai)
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực cộng với số đối của nó đều bằng 0.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
Dùng các kí hiệu để viết lại mệnh đề sau và viết mệnh đề phủ định của nó: Q: “Với mọi số thực thì bình phương của nó là một số không âm”
A. Q: ∀ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
B. Q: ∃ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là : Q : ∃ x ∈ R , x 2 < 0
C. Q: ∀x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∃ x ∈ R , x 2 < 0
D. Q: x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó, Có một tam giác cân không phải là tam giác đều.
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó. ∀ x ∈ R: x.x = 1
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó ∀ n ∈ Z: n ≤ n2
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
Xét tính đúng sai của mỗi mệnh đề sau và phát biểu mệnh đề phủ định của nó: √2 là một số hữu tỉ
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ x ∈ R : x < x + 1