Rút gọn A = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{ [}\)!
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{Doumo arigatou}\)!
Chứng minh rằng: \(\frac{1}{\sqrt{101}}+\frac{1}{\sqrt{102}}+\frac{1}{\sqrt{103}}+...+\frac{1}{\sqrt{256}}<12\)
Chứng minh rằng : \(\frac{1}{\sqrt{101}}+\frac{1}{\sqrt{102}}+\frac{1}{\sqrt{103}}+...+\frac{1}{\sqrt{256}}<12\)
Tính
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{101\sqrt{100}+100\sqrt{101}}\)
Thực hiện các phép tính sau:
a) A = \(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+....-\frac{1}{\sqrt{100}+\sqrt{101}}\)
b) B = \(\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
Đề bài : Tính giá trị biểu thức :
\(B=\frac{_{\left(3+\sqrt{5}\right).}\left(3-\sqrt{5}\right)}{\left(3+\sqrt{5}\right)}\)
\(C=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}_{ }}\)
\(D=\frac{2}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
Tính \(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{100}+100\sqrt{101}}\)