Độ dài cạnh của tam giác đều nội tiếp đường tròn (O;R) bằng
A. R/2; B. (R 3 )/2;
C. R 3 D. Một đáp án khác.
Hãy chọn phương án đúng.
a) Vẽ tam giác đều ABC cạnh a = 3cm.
b) Vẽ tiếp đường tròn (O; R) ngoại tiếp tam giác đều ABC. Tính R.
c) Vẽ tiếp đường tròn (O; r) nội tiếp tam giác đều ABC. Tính r.
d) Vẽ tiếp tam giác đều IJK ngoại tiếp đường tròn (O; R).
Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều bằng
A. 1/3; B. 1/2;
C. 1/ 2 ; D. 2.
Hãy chọn phương án đúng.
Cho đường tròn (O; R). M là một điểm ở ngoài đường tròn sao cho OM = 2R. Tia MO cắt đường tròn ở A và B (A nằm giữa M và O). Từ M kẻ hai tiếp tuyến MC và MD với đường tròn (O) (C và D là hai tiếp điểm). Chứng minh:
1. Tứ giác MCOD nội tiếp và MO vuông góc CD tại H
2. Tam giác MCD là tam giác đều và tính độ dài cạnh của nó theo R
3. MA.MB = MH.MO
Cho (O;R) và M với OM =2R. Các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm), OM cắt AB tại I và cắt đường tròn Ở C, D ( MC<MD)
a) CM Tam giác MAB đều từ đó tính R độ dài cạnh của tam giác đó
B) Tính AC, AD theo R
C) CM MB là tiếp tuyến (D;DI)
Cho một đa giác đều n cạnh có độ dài mỗi cạnh là a. Hãy tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp đa giác đều đó
Cho đường tròn ( O;R ), M là một điểm ở ngoài đường tròn sao cho OM = 2R. Tia MO cắt đường tròn ở A và B ( A nằm giữa M và O ). Từ M kẻ 2 tiếp tuyến MC và MD với đường tròn (O), H là giao điểm của MO với CD. Chứng minh:
a. Tứ giác MCOD nội tiếp, MO vuông góc CD
b. Tam giác MCD là tam giác đều và tính độ dài cạnh của nó theo R
c. MA.MB=MH.MO
Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm).
1) Chứng minh tam giác ABO vuông tại B và tính độ dài AB theo R (1đ)
2) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. Chứng minh AC là tiếp tuyến của đường tròn (O). (1đ)
3) Chứng minh tam giác ABC đều. (1đ)
4) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. Chứng minh ba điểm A, E, F thẳng hàng. (0.5đ)
Độ dài cạnh của tam giác đều nội tiếp đường tròn (O; R) bằng:
A. R 2
B. R 3 2
C. R 3
D. R 2