Cho (P): y= -x^2, (d): y= -2(m+1)x + 2m ( với x là ẩn, m là tham số) 1. Tìm tọa độ giao điểm của (d) và (P) với m = 0. 2. Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ giao điểm là độ dài hai cạnh góc vuông của 1 tam giác có cạnh huyền bằng căn 12
Cho (P): y=x2 và (d): y= 2(m-1)x+5-2m. Tìm m để đường thẳng (d) luôn cắt (P) tại hai điểm có hoành độ là độ dài hai cạnh góc vuông của một tam giác có độ dài cạnh huyền bằng \(\sqrt{14}\)
Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = mx - m + 1
Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt có hoành độ x1, x2 là độ dài hai cạnh góc vuông của 1 tam giác vuông có độ dài đường cao tương ứng với cạnh huyền bằng \(\frac{1}{\sqrt{5}}\)
(d):y=mx-m+1
(P):y=x^2
a) tìm tọa độ giao điểm của (d) và (P) khi m=4
b)tìm giá trị của m để đt (d) và (P) cắt nhau tại hai điểm phân biệt có hoành độ x1,x2 là độ dài 2 cạnh góc vuông của 1 tam giác có độ dài đường cao ứng với cạnh huyền bằng 1/√5
Cho phương trình x2 - 2(m + 1)x + 2m = 0 (1) (với x là ẩn, m là tham số).
1. Giải phương trình (1) với m = 0.
2. Tìm m để phương trình (1) có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √2.Cho phương trình x2 - 2(m + 1)x + 2m = 0 (1) (với x là ẩn, m là tham số).
1. Giải phương trình (1) với m = 0.
2. Tìm m để phương trình (1) có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √2.
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
Trên mặt phẳng tọa độ Ory, cho parabol (P):y=r? và đường thẳng (d): y = (m + 2)x - (m+2)x-2m. a) Xác định tọa độ giao điểm (d) và (P) khi m = -3. b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là