Gọi M ( x 0 ; y 0 ) là điểm cố định mà d luôn đi qua.
M ( x 0 ; y 0 ) ∈ d ∀ k
⇔ y 0 = k + 1 3 − 1 x 0 + k + 3 ∀ k ⇔ k x 0 + x 0 + 3 k − k − 3 + 3 − 3 y 0 + y 0 = 0 ∀ k ⇔ k x 0 + 3 − 1 + x 0 + 3 − 3 + 1 − 3 y 0 = 0 ∀ k ⇔ x 0 + 3 − 1 = 0 x 0 + 1 − 3 y 0 + 3 − 3 = 0 ⇔ x 0 = 1 − 3 1 − 3 + 1 − 3 y 0 + 3 − 3 = 0 ⇔ x 0 = 1 − 3 1 − 3 y 0 + 4 − 2 3 = 0 ⇔ x 0 = 1 − 3 1 − 3 y 0 + 1 − 3 2 = 0 ⇔ x 0 = 1 − 3 y 0 = − 1 + 3 ⇒ M 1 − 3 ; 3 − 1
là điểm cố định mà d luôn đi qua
Đáp án cần chọn là: A