\(\dfrac{5x-3}{x^2-9}-\dfrac{x}{x-3}=\dfrac{2x-1}{x+3}\\ĐKXĐ:x\ne3;-3\\ \Leftrightarrow \dfrac{5x-3}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(2x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\\ \Rightarrow5x-3-x^2+3x=2x^2-6x-x+3\\ \Leftrightarrow8x-3-x^2=2x^2-7x+3\\ \Leftrightarrow8x+7x-x^2-2x^2=3+3\\ \Leftrightarrow15x-3x^2=6\\ \Leftrightarrow3x\left(5-x\right)=6\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)