\(\dfrac{4}{9}:\left(x+0,4\right)=\dfrac{2}{3}\)
\(\dfrac{4}{9}:\left(x+\dfrac{4}{10}\right)=\dfrac{2}{3}\)
\(60=18\left(5x+2\right)\)
\(18\left(5x+2\right)=60\)
\(\left(5x+2\right)=60:18\)
\(5x+2=\dfrac{10}{3}.\)
\(5x=\dfrac{10}{3}-2\)
\(5x=\dfrac{4}{3}\)
\(x=\dfrac{4}{3}:5\)
\(x=\dfrac{4}{15}.\)
\(Vậy...\)
\(-\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=1\dfrac{2}{3}\)
\(-\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{5}{3}\)
\(-\left(x+\dfrac{1}{2}\right)=\dfrac{5}{3}+\dfrac{3}{4}\)
\(-\left(x+\dfrac{1}{2}\right)=\dfrac{29}{12}.\)
\(2x+\dfrac{1}{2}=-\dfrac{29}{12}\)
\(2x+1=-\dfrac{29}{12}\cdot2\)
\(2x+1=-\dfrac{29}{6}\)
\(2x=-\dfrac{29}{6}-1\)
\(2x=-\dfrac{35}{6}.\)
\(x=-\dfrac{35}{6}:2\)
\(x=-\dfrac{35}{12}.\)
\(x=-2\dfrac{11}{12}.\)
\(Vậy...\)
\(\dfrac{4}{9}:\left(x+0,4\right)=\dfrac{2}{3}\)
\(x+0,4=\dfrac{4}{9}:\dfrac{2}{3}=\dfrac{4}{9}.\dfrac{3}{2}=\dfrac{12}{18}=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}-0,4\)
\(x=\dfrac{2}{3}-\dfrac{2}{5}=\dfrac{10}{15}-\dfrac{6}{15}\)
\(x=\dfrac{4}{15}\)
\(-\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=1\dfrac{2}{3}\)
\(-\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{5}{3}\)
\(x+\dfrac{1}{2}=\left(-\dfrac{3}{4}\right)-\dfrac{5}{3}=\left(-\dfrac{9}{12}\right)-\dfrac{20}{12}=\dfrac{-29}{12}\)
\(x=\dfrac{-29}{12}-\dfrac{1}{2}=\dfrac{-29}{12}-\dfrac{6}{12}\)
\(x=\dfrac{-35}{12}\)
\(\left[x-\dfrac{2}{3}\right]-\dfrac{5}{4}=0\)
\(\left[x-\dfrac{2}{3}\right]=0+\dfrac{5}{4}=\dfrac{5}{4}\)
\(\left\{{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{5}{4}\\x-\dfrac{2}{3}=-\dfrac{5}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{4}+\dfrac{2}{3}\\x=-\dfrac{5}{4}+\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{23}{12}\\x=\dfrac{-7}{12}\end{matrix}\right.\)