\(\dfrac{2}{3}.\dfrac{2022}{2021}-\dfrac{2}{3}.\dfrac{1}{2021}+\dfrac{1}{3}\)
\(=\dfrac{2}{3}.\left(\dfrac{2022}{2021}-\dfrac{1}{2021}\right)+\dfrac{1}{3}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}\)
\(=1\)
\(#Nzgoca\)
\(\dfrac{2}{3}.\dfrac{2022}{2021}-\dfrac{2}{3}.\dfrac{1}{2021}+\dfrac{1}{3}\)
\(=\dfrac{2}{3}.\left(\dfrac{2022}{2021}-\dfrac{1}{2021}\right)+\dfrac{1}{3}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}\)
\(=1\)
\(#Nzgoca\)
A = \(\dfrac{2022}{2021^{2^{ }}+1}\) + \(\dfrac{2022}{2021^{2^{ }}+2}\) + \(\dfrac{2022}{2021^2+3}\) + ... + \(\dfrac{2022}{2021^{2^{ }}+2021}\)
Chứng tỏ rằng A không phải số tự nhiên
\(t=\dfrac{1}{2^1}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\)
CHỨNG TỎ T < 2
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}\)
cho A=\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2022}\)
B=\(\dfrac{2021}{1}+\dfrac{2020}{2}+\dfrac{2019}{3}+...+\dfrac{1}{2021}\)
tính tỉ số \(\dfrac{B}{A}\)
Tìm x, biết:
( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2023}\) ) . x = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) + \(\dfrac{2020}{3}\)
+ ... + \(\dfrac{1}{2022}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2022}}\) và \(B=1-\dfrac{1}{3^{2021}}\)
So sánh A và B
giúp mk, please :)
\(\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{2017+\dfrac{2016}{6}+\dfrac{2015}{7}+...+\dfrac{1}{2021}}\)
A. \(\dfrac{1}{2020}\)
B. \(\dfrac{1}{2021}\)
C. \(\dfrac{1}{2019}\)
D. \(\dfrac{1}{2022}\)
chọn ra 3 ngừi nhanh nhứt:>>
T=\(\dfrac{2}{2}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\) so sánh với 3
cho \(M=\dfrac{1}{2^3}+\dfrac{2}{3^3}+\dfrac{3}{4^3}+...+\dfrac{2021}{2022^3}+\dfrac{2022}{2023^3}\) chứng minh rằng giá trị của M không phải là một số tự nhiên
gấp =) !