A = 1+2+22+...+2300
2A = 2+22+23+...+2301
2A - A = 2301-1
=> A = 2301-1
\(A=1+2+2^2+...+2^{300}\)
\(\Leftrightarrow2A=\left(1.2\right)+\left(2.2\right)+\left(2^2.2\right)+...+\left(2^{300}.2\right)\)
\(\Leftrightarrow2A=2+2^2+....+2^{301}\)
\(\Leftrightarrow2A-A=\left(2+2^2+...+2^{301}\right)\)
\(2A-A=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{300}-2^{300}\right)+2^{301}-1\)
\(A=0+0+0+...+2^{301}-1\)
\(A=2^{301}-1\)
Giờ chăc dễ hiểu rồi