Ta có 0 < u n = 5 n 3 n + 1 < 5 n 3 n = 5 3 n ; ∀ n
Lại có lim 5 3 n = 0 nên theo định lý kẹp có lim 5 n 3 n + 1 = 0
Chọn đáp án C
Ta có 0 < u n = 5 n 3 n + 1 < 5 n 3 n = 5 3 n ; ∀ n
Lại có lim 5 3 n = 0 nên theo định lý kẹp có lim 5 n 3 n + 1 = 0
Chọn đáp án C
Cho dãy số ( u n ) xác định bởi u 1 = 1 u n + 1 = 2 u n + 3 u n + 2 v ớ i n ≥ 1
a) Chứng minh rằng u n > 0 với mọi n.
b) Biết ( u n ) có giới hạn hữu hạn. Tìm giới hạn đó.
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
Cho dãy số (\(u_n\)) xác định: \(\left\{{}\begin{matrix}u_1=5\\u_{n+1}=2u_n-3\end{matrix}\right.\).Tìm giới hạn lim(\(\dfrac{u_n}{2^n}\))
Tính giới hạn của dãy số B = l i m n 6 + n + 1 3 - 4 n 4 + 2 n - 1 ( 2 n + 3 ) 2
A. +∞
B. -∞
C. 3
D. -3/4
Cho hai dãy số u n và v n . Biết | u n – 2 | ≤ v n với mọi n và l i m v n = 0 . Có kết luận gì về giới hạn của dãy số u n ?
Tính giới hạn a: lim n -> ∞ (3 ^ (2n) + 5) / (4 ^ (n + 2) - 9 ^ (n - 1))
Tính giới hạn của dãy số D=lim n 2 + n + 1 - 2 n 3 + n 2 - 1 3 + n .:
A. + ∞ .
B. - ∞ .
C. - 1 6 .
D. 1.
Tính giới hạn của dãy số D = l i m ( n 2 + n + 1 - 2 n 3 + n 2 - 1 3 + n )
A. +∞
B. -∞
C. -1/6
D. 1/3