Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thầy Tùng Dương

(Đà Nẵng - 2020)

Cho tam giác ABC nội tiếp trong đường tròn tâm O đường kính AB. Trên cung nhỏ BC của đường tròn (O) lấy điểm D (không trùng với B và C). Gọi H là chân đường vuông góc kẻ từC đến AB (H thuộc AB) và E là giao điểm của CH với AD.

a) Chứng minh rằng tứ giác BDEH là tứ giác nội tiếp.

b) Chứng minh rằng $AB^2 = AE.AD + BH.BA$.

c) Đường thẳng qua E song song với AB, cắt BC tại F. Chứng minh rằng \(\widehat{CDF}=90^\circ\) và đường tròn ngoại tiếp tam giác OBD đi qua trung điểm của CF.

Leem
2 tháng 5 2021 lúc 22:52

a, ta có \(\widehat{ADB}\)là góc nội tiếp chắn nửa đường tròn => \(\widehat{ADB}=90^0\)hay \(\widehat{EDB}=90^0\)

Xét tứ giác BDEH có : 

\(\widehat{EHB}=90^0\left(CH\perp AB\right)\)

\(\widehat{EDB}=90^0\left(cmt\right)\)

=> tugiac BDEH noi tiep

b,

ta có \(\widehat{ADC}=\widehat{ABC}\)( BDEH noitiep cmt)

mà \(\widehat{ABC}+\widehat{CAB}=90^0\)(góc ACB=90 độ, góc nt chắn nửa đg tròn)

  \(\widehat{ACH}+\widehat{CAB}=90^0\)( góc AHC=90 độ vì  CH vuông với AB)

=> \(\widehat{ABC}=\widehat{ACH}\)

=> \(\widehat{ACH}=\widehat{ADC}\left(=\widehat{ABC}\right)\)hay góc ADC= góc ACE

Xét tam giác ACE và tam giác ADC

\(\widehat{ADC}=\widehat{ACE}\left(cmt\right)\)

góc CAD chung

=> tam giác ACE đồng dạng với tam giác ADC (g-g)

=> \(\frac{AC}{AD}=\frac{AE}{AC}\)

=> \(AC^2=AD.AE\)(1)

Tam giác ABC vuông tại C có AH là đường cao

=> BC2= BH.BA  (hethucluong) (2)        

(1);(2) => \(AC^2+BC^2=AE.AD+BH.BA\)

mà AC2+ BC2= AB2 ( pytago trong tam giác ABC vuông ở C)

=> \(AB^2=AE.AD+BH.BA\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết