cho a,b,c> 0 thỏa mãn a+b+c=1
tìm GTLN A= \(\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)
Cho a+b+c=1. Tìm GTLN của : \(A=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)
Tìm GTNN của A=\(\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\) biết a,b,c không âm và a+b+c=1.
Cho 3 số \(a,b,c>0\)thỏa \(a+b+c=1\).Tìm \(GTLN,GTNN\)của biểu thức:
\(P=\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9\sqrt{abc}\)
Cho a,b,c>0 thỏa a+b+c=3. Tìm Max \(P=\frac{2}{3+ab+bc+ca}+\frac{\sqrt{abc}}{6}+\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a,b,c > 0 thỏa mãn a + b + c = abc . Tìm
\(A_{max}=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a, b, c > 0 và \(6a+3b+2c=abc\) .
Tìm MÃ của T = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Chứng minh rằng: \(\frac{\sqrt{a^2+abc}}{c+ab}+\frac{\sqrt{b^2+abc}}{a+bc}+\frac{\sqrt{c^2+abc}}{b+ca}\le\frac{1}{2\sqrt{abc}}\)
Với a,b,c là các số thực dương thỏa mãn đẳng thức \(6a+3b+2c=abc\)
➢Tìm giá trị lớn nhất của \(Q=\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)