Câu 1 đề sai
Câu 2: Ta có:\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{3.7}-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{17}\left(2^4-2\right)\)
\(=2^{17}.14⋮14\)
Nên \(8^7-2^{18}⋮14\)
Vậy \(8^7-2^{18}⋮14\)
Cảm ơn anh Incursion_03 đã nhắc nhở nha.
Các bạn cho mình sửa đề chút ạ :
\(\frac{a-b+c}{a+2b-c}\)
Câu 1 , Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)
Thay vào A ta được
\(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}\)\(=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Câu 1; Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k;b=5k;c=7k\)(1)
Thay (1) vô A
\(A=\frac{a-c+c}{a+2b-c}=\frac{a}{a+2b-c}=\frac{2k}{2k+10k-7k}=\frac{2k}{5k}=\frac{2}{5}\)
\(C2;8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{17}.2.7=2^{17}.14⋮14\)
\(\RightarrowĐPCM\)
Câu 1 : Sau khi sửa \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
Vậy ..............
Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\)
\(\Rightarrow a=2k,b=5k,c=7k\)
Do đó : \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+10k-7k}\)
\(=\frac{4k}{5k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Câu 2 : \(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2.7.2^{17}=14.2^{17}⋮14\)
Vậy \(\left(8^7-2^{18}\right)⋮14\)