cos 2 α + t g 2 α . cos 2 α = cos 2 α + sin 2 α / cos 2 α . cos 2 α = cos 2 α + sin 2 α = 1
\(cos^2\alpha+tg^2\alpha.cos^2\alpha\)
\(=cos^2\alpha\left(1+tg^2\alpha\right)\)
\(=cos^2\alpha.\dfrac{1}{cos^2\alpha}\)
\(=1\)
cos 2 α + t g 2 α . cos 2 α = cos 2 α + sin 2 α / cos 2 α . cos 2 α = cos 2 α + sin 2 α = 1
\(cos^2\alpha+tg^2\alpha.cos^2\alpha\)
\(=cos^2\alpha\left(1+tg^2\alpha\right)\)
\(=cos^2\alpha.\dfrac{1}{cos^2\alpha}\)
\(=1\)
2)đơn giản biểu thức
a) 1-sin2 alpha
b) sin4 alpha + cos4 alpha +2 sin2 alpha.cos2 alpha
c) (1-cos alpha).(1+cos alpha)
d) 1+ sin2 alpha +cos2 alpha
e) tg2 alpha -sin2 alpha.tg2 alpha
g) cos2 alpha+cos2 alpha.tg2 alpha
Rút gọn:
A= \(\sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
B= \(\left(cos\alpha-sin\alpha\right)^2+\left(cos\alpha+sin\alpha\right)^2\)
C= \(\dfrac{\left(cos\alpha-sin\alpha\right)^2-\left(cos\alpha+sin\alpha\right)^2}{sin\alpha.cos\alpha}\)
\(sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)(với α là góc nhọn)
Tính B = \(\sin^6\alpha+cos^6\alpha+3sin^2\alpha.cos^2\alpha\)
Chứng minh:
a)\(\cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
b)\(\frac{cos\alpha}{1-sin\alpha}=\frac{1+sin\alpha}{cos\alpha}\)
c)\(\frac{\left(sin\alpha+cos\alpha\right)^2-\left(sin\alpha-cos\alpha\right)^2}{sin\alpha.cos\alpha}=4\)
Mình cần gấp!!!
Rút gọn biểu thức
\(A=\frac{sin^2\alpha-cos^2\alpha}{1+2sin\alpha.cos\alpha}\)
Chứng minh: \(\sin^4\alpha+cos^4\alpha=1-2\sin^2\alpha.cos^2\alpha\)
\(\frac{1-2sin\alpha.cos\alpha}{sin^2\alpha-cos^2\alpha}\)
rút gọn biểu thức trên
C/m \(\forall\alpha< 45^0\)thì ta có\(\sin2\alpha=2sin\alpha.cos\alpha\)và \(cos2\alpha=cos^2\alpha-sin^2\alpha\)