Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
Cộng các phân thức đại số sau vào với nhau:
\(\frac{1}{\left(y-z\right)\left(x^2+xz-y^2-yz\right)}+\frac{1}{\left(z-x\right)\left(y^2+xy-z^2-zx\right)}+\frac{1}{\left(x-y\right)\left(z^2+yz-x^2-xy\right)}\)
thực hiện phép cộng các phân thức
a)\(\frac{5x-1}{3x^2y}+\frac{x+1}{3x^2y}\)
b)\(\frac{7}{12xy^2}+\frac{11}{18x^3y}\)
c)\(\frac{x}{x+2}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}\)
\(Tìm\)\(A\)TRONG mỗi phân thức PHÂN THỨC SAU
\(\frac{4x^2-3x-7}{A}=\frac{4x-7}{2x+3}.\)
giải. Ta có : \(\left(4x^2-3x-7\right)\left(2x+3\right)=A.\left(4x-7\right)\)
\(Hay\)\(\left(4x^2-7x+4x-7\right)\left(2x+3\right)=A.\left(4x-7\right).\)
\(Hay\)\(\left(4x-7\right)\left(x+1\right)\left(2x+3\right)=A.\left(4x-7\right).\)
\(Vậy\)\(A=\left(x+1\right)\left(2x+3\right)=2x^2+5x+3.\)
Cô ơi, ở dòng hay thứ 2, chỗ : \(\left(x+1\right)\left(2x+3\right)\)từ đâu có vậy cô ? (cp6 làm, phân tích chi tiết giúp em nhe cô). Em cám ơn cô. :)
\(P=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right)\cdot\left(\frac{\left(x^3-2x^2-2x-1\right)\cdot\left(x+1\right)}{x^9+x^7-3x^2-3}\right)+1-\frac{2\left(x+6\right)}{x^2+1}\right]\cdot\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
a, Tìm ĐKXD của P
b,Rút Gọn P
c,Chứng Minh Với các giá trị của x mà biểu thức P có nghĩa thì \(-5\le P\le0\)
Rút gọn phân thức
\(\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+..+\frac{1}{\left(x-4\right)\left(x-5\right)}\)
Bài 1: rút gọn phân thức
a) \(\frac{14xy^2\left(2x-3y\right)}{21x^2y\left(2x-3y\right)^2}\)
b) \(\frac{8xy\left(3x-1\right)^2}{12x^3\left(1-3x\right)}\)
c) \(\frac{20x^2-45}{\left(2x+3\right)^2}\)
d) \(\frac{5x^2-10xy}{2\left(2y-x\right)^3}\)
e) \(\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)
f) \(\frac{9-\left(x+5\right)^2}{x^2+4x+4}\)
g) \(\frac{32x-8x^2+2x^3}{x^3+64}\)
h) \(\frac{5x^3+5x}{x^4-1}\)
Bài 2: Quy đồng mẫu thức của các phân thức sau
a) \(\frac{7x-1}{2x^2+6x};\frac{5-3x}{x^2-9}\)
b) \(\frac{x+1}{x-x^2};\frac{x+2}{2-4x+2x^2}\)
c) \(\frac{4x^2-3x+5}{x^3-1};\frac{2x}{x^2+x+1};\frac{6}{x-1}\)
d) \(\frac{7}{5x};\frac{4}{x-2y};\frac{x-y}{8y^2-2x^2}\)
Rút gọn biểu thức
1)\(\frac{c\left(a+c\right)-a\left(a-c\right)}{\frac{c}{a-c}-\frac{a}{a+ c}}\)
2) \(\frac{\frac{x^2-y^2}{x}}{\frac{1}{x}-\frac{1}{y}}\)
3) \(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)