Tìm các bộ 3 số nguyên dương (x,y,z) thỏa mãn hệ phương trình :
\(\hept{\begin{cases}x+y=z\\x^3+y^3=z^2\end{cases}}\)
tìm bộ ba số nguyên dương x,y,z thỏa mãn \(\hept{\begin{cases}x+y-z=0\\x^3+y^3-z^2=0\end{cases}}\)
Tìm các số dương x , y , z thỏa mãn :
\(\hept{\begin{cases}x+y^2+z^3=3\\\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=6\end{cases}}\)
Tìm tất cả các bộ ba số nguyên dương thỏa mãn hệ phương trình :
\(\hept{\begin{cases}2\cdot x^{2010}=y^6+z^6\\2\cdot y^{2010}=z^6+x^6\\2\cdot z^{2010}=x^6+y^6\end{cases}}\)
Giải hệ phương trình nghiệm nguyên:
\(\hept{\begin{cases}x^2+13y^2=z^2\\13z^2+y^2=t^2\end{cases}}\)
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
Cho x, y, z là các số thực dương thỏa mãn \(\hept{\begin{cases}x+z-yz=1\\y-3z+xz=1\end{cases}}\)
Tìm GTNN của biểu thức T = x2 + y2
Tìm các số x,y,z không âm thỏa mãn hệ phương trình:\(\hept{\begin{cases}2\left(x+y\right)=z^2\\2\left(y+z\right)=x^2\\2\left(z+x\right)=y^2\end{cases}}\)
Tìm tất cả số nguyên dương x,y thỏa mãn \(\hept{\begin{cases}x^2-2y^2=9\\50< x< 100\end{cases}}\)