HELP ME !
Có hay ko các số a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)và a+b+c=abc
1/hỏi có hay không 16 số tự nhiên, mỗi số có 3 chữ số được tạo thành từ ba chữ số a,b,c thỏa mãn hai số bất kỳ trong chúng không có cùng số dư khi chia cho 16?
2/cho a,b,c là các số thực dương thỏa mãn abc=1.chứng minh: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(a+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho 3 số a,b,c khác 0 thỏa mãn abc=1 và
\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}=\frac{b^3}{a}+\frac{c^3}{b}+\frac{a^3}{c}\)
Chứng minh rằng trong 3 số a,b,c luôn tồn tại một số là lập phương của 2 số còn lại
Cho 3 số a,b,c thỏa mãn:
\(\hept{\begin{cases}a+b+c=1\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\end{cases}}\)
CMR: Trong 3 số a,b,c tồn tại 2 số đối nhau(làm theo 2 cách)
Cho a,b,c là các số thực thỏa mãn abc=1 và a+b+c = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh có ít nhất 1 trong các số a,b,c bằng 1
Cho các số abc thỏa mãn abc = 1 và \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) . Chứng minh rằng trong ba số a , b , c có ít nhất 1 số bằng 1
Giải hộ mình mấy bài này với:
1)cho số thực dương a,b,c thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
2)Cho 3 số x,y,z khác không thỏa mãn:\(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2010\end{cases}}\)
Chứng minh rằng trong 3 số x,y,z luôn tồn tại 2 số đối nhau.
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)