có tồn tại các số hữu tỉ dương a , b sao cho
a, \(\sqrt{a}+\sqrt{b}=\sqrt{2}.\)
b, \(\sqrt{a}+\sqrt{b}=\sqrt[4]{2}.\)
Giả sử a, b là số hữu tỉ dương, ngoài ra b không là bình phương của số hữu tỉ nào. Chứng minh rằng tồn tại số hữu tỉ c, d sao cho:
\(\sqrt{a+\sqrt{b}}=\sqrt{c}+\sqrt{d}\) thì \(a^2-b\) là bình phương của một số hữu tỉ. Điều ngược lại có đúng không?
Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Tồn tại hay không các số hữu tỉ a,b,c,d sao cho \(\left(a+b\sqrt{2}\right)^{1994}+\left(c+d\sqrt{2}\right)^{1994}=5+4\sqrt{2}\)
Cho a và b là 2 số hữu tỉ khác 0. CMR tồn tại 2 số hữu tỉ x và y sao cho \(\left(a+b\sqrt{5}\right)\left(x+y\sqrt{5}\right)=b+a\sqrt{5}\)
Cho các số nguyên dương m, n không phải là số chính phương . Giả sử a, b là các số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\)
là số hữu tỉ. CMR \(a\sqrt{m}+b\sqrt{n}=0\)
cho a,b,c là các số nguyên dương. cmr nếu \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)là số hữu tỉ thì a,b,c là các số chính phương
cho a,b,c là các số hữu tỉ không âm và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ. Chứng minh \(\sqrt{a},\sqrt{b},\sqrt{c}\)là các số hữu tỉ
Nếu \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=a+b\sqrt{3}\)với a;b là các số hữu tỉ thì ab=....