Biết rằng khi khai triển nhị thức Niutơn x + 1 2 x 4 n = a 0 x n + a 1 x n - 1 1 x 4 + a 2 x n - 2 1 x 4 2 + + a 3 x n - 3 1 x 4 3 . . . (với n là số nguyên lớn hơn 1) thì ba số a 0 , a 1 , a 2 theo thứ tự lập thành một cấp số cộng. Hỏi trong khai triển trên, có bao nhiêu số hạng mà lũy thừa của x là một số nguyên.
A. 1
B. 2
C. 3
D. 4
Trong khai triển nhị thức ( x + 2 ) n + 6 ; ( n ∈ ℕ ) Có tất cả 17 số hạng. Vậy n bằng
A.17.
B.11.
C.10.
D.12.
Trong khai triển nhị thức ( x + 2 ) n + 6 v ớ i n ∈ ℕ có tất cả 19 số hạng. Vậy n bằng
A. 11
B. 12
C. 10
D. 19
Tìm số hạng chứa x5 trong khai triển \(\left(x-\dfrac{2}{x}\right)^{n^{ }}\) , biết n là số tự nhiên thỏa mãn \(C^3_n=\dfrac{4}{3}n+2C^2_n\)
A.144 B.134 C.115 D.141
Trong khai triển nhị thức x + 1 x n , x ≠ 0 , hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Trong khai triển nhị thức x + 1 x n , x ≠ 0 hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ 2 là 35. Tìm số hạng không chứa x trong khai triển nói trên.
A. 225
B. 252
C. 522
D. 525
Tìm hệ số của số hạng chứa x^10 trong khai triển: (x^2-x^3+1)^10
( x + 2 ) n + 5 , ( n ∈ ℕ ) Khai triển nhị thức có tất cả 2019 số hạng. Tìm n.
A. 2018
B. 2014
C. 2013
D. 2015
Xét khai triển \(\left(2x+\frac{1}{x}\right)^{20}\)
a) Viết số hạng thứ k + 1 trong khai triển
b) Số hạng nào trong khai triển không chứa x
c) Xác định hệ số \(x^4\)trong khai triển