Xét tính liên tục của hàm số
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2+5x+4}{x^3+1};x\ne-1\\1;x=-1\end{matrix}\right.\)
trên tập xác định của nó ?
Bài 1 :
Tìm các giá trị của m để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\frac{\sqrt{1-x}-\sqrt{1+x}}{x}khix< 0\\m+\frac{1-x}{1+x}khix\ge0\end{matrix}\right.\) liên tục tại x = 0 ?
Bài 2 : Chứng minh rằng phương trình \(4x^4+2x^2-x-3=0\) có ít nhất 2 nghiệm trong khoảng (-1;1)
Xét tính liên tục trên R của hàm số :
\(g\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-x-2}{x-2};\left(x>2\right)\\5-x;\left(x\le2\right)\end{matrix}\right.\)
Tìm tất cả các giá trị thực của m để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\frac{\sqrt{x+1}-1}{x}khix>0\\\sqrt{x^2+1}-mkhix\le0\end{matrix}\right.\) liên tục trên R
A. \(m=\frac{3}{2}\)
B. \(m=\frac{1}{2}\)
C. \(m=-2\)
D. \(m=-\frac{1}{2}\)
Cho hàm số f(x) = \(\left\{{}\begin{matrix}x^2sin\dfrac{1}{x}\left(x\ne0\right)\\0\left(x=0\right)\end{matrix}\right.\)
a, Tính \(g\left(x\right)=\lim\limits_{t\rightarrow0}=\dfrac{f\left(x+t\right)-f\left(x-2t\right)}{2t}\) (x thuộc R)
b, Khảo sát sự tồn tại của g'(x) với x thuộc R
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}ax^2+bxkhix\ge1\\2x-1khix< 1\end{matrix}\right.\) .Để hàm số đã cho có đạo hàm tại x = 1 thì 2a + b bằng :
A. 2
B. 5
C. -2
D. -5
Câu 1:
Xác đinh k để hàm: f(x)=\(\left\{{}\begin{matrix}\frac{x^{2016}+x-2}{\sqrt{2018x+1}-\sqrt{x+2018}}\\k\end{matrix}\right.\)liên tục tại 1
Câu 2: Cho \(lim\)(x-->1) \(\frac{x^2+ax+b}{x^2-1}=\frac{1}{2}\). Tổng S= \(a^2+b^2\) bằng bao nhiêu
Câu 3: lim(x->1) \(\frac{\sqrt{x^2+x+2}-\sqrt[3]{7x+1}}{\sqrt{2}\left(x-1\right)}=\frac{a\sqrt{2}}{b}+c\) với a/b là phân số tối giản. Tính a+b+c
cho hàm số f(x) thoả mãn \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}=\dfrac{1}{4}\)
tính \(I=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{\left(x-3\right)\left(\sqrt{5f\left(x\right)+6}+1\right)}\)
Giúp em với ạ em cảm ơn nhìu!!!!!
Cho \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}=7\)
Tính \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{5f\left(x\right)-11}-4}{x^2-x-6}\)
Giúp em với ạ!!! em cảm ơn nhìu<3