Bài 4: Ôn tập chương Giới hạn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duyy Kh

Cho \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}=7\)

Tính \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{5f\left(x\right)-11}-4}{x^2-x-6}\)

Giúp em với ạ!!! em cảm ơn nhìu<3

Nguyễn Việt Lâm
24 tháng 3 2022 lúc 20:02

Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?

\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực

Nguyễn Việt Lâm
24 tháng 3 2022 lúc 21:49

Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-15=0\) có nghiệm \(x=3\)

\(\Rightarrow f\left(3\right)=15\)

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{5f\left(x\right)-11}-4}{x^2-x-6}=\lim\limits_{x\rightarrow3}\dfrac{5f\left(x\right)-75}{\left(x-3\right)\left(x+2\right)\left(\sqrt[3]{\left(5f\left(x\right)-11\right)^2}+4\sqrt[3]{5f\left(x\right)-11}+16\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}.\dfrac{5}{\left(x+2\right)\left(\sqrt[3]{\left(f\left(x\right)-11\right)^2}+4\sqrt[3]{f\left(x\right)-11}+16\right)}\)

\(=7.\dfrac{5}{5.\left(\sqrt[3]{\left(5.15-11\right)^2}+4\sqrt[3]{5.15-11}+16\right)}=\dfrac{7}{48}\)


Các câu hỏi tương tự
Duyy Kh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
dung doan
Xem chi tiết
dung doan
Xem chi tiết
Trần Thanh Trọng
Xem chi tiết
dung doan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
dung doan
Xem chi tiết
dung doan
Xem chi tiết