Đáp án A
Gọi với
Do A, B đối xứng nhau qua điểm M(3;3) nên M là trung điểm của AB.
Tính được:
Đáp án A
Gọi với
Do A, B đối xứng nhau qua điểm M(3;3) nên M là trung điểm của AB.
Tính được:
Biết rằng đồ thị (C) của hàm số y = 2 x + 1 x + 2 luôn cắt đường thẳng d:y=-x+m tại hai điểm phân biệt A và B. Tìm các giá trị thực của tham số m sao cho độ dài đoạn thẳng AB ngắn nhất
A.
B.
C.
D.
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.
B.
C.
D.
Giả sử m = - a b , a , b ∈ ℤ * , ( a , b ) = 1 là giá trị thực của tham số m để đường thẳng d : y = - 3 x + m cắt đồ thị hàm số y = 2 x + 1 x - 1 (C) tại hai điểm phân biệt A,B sao cho trọng tâm tam giác OAB thuộc đường thẳng ∆ : x - 2 y - 2 = 0 với O là gốc tọa độ. Tính a+2b.
A. 2
B. 5
C. 11
D. 21
Cho hàm số y = 2 x + 1 x + 1 có đồ thị (C) và đường thẳng d: y = x + m. Giá trị của tham số m để d cắt (C) tại hai điểm phân biệt A, B sao cho AB = 10 là:
A. m = -1 hoặc m = 6
B. 0 ≤ m ≤ 5
C. m = 0 hoặc m = 6
D. m = 0 hoặc m = 7
Biết rằng đồ thị hàm số y = x 3 - 4 x 2 + 5 x - 1 cắt đồ thị hàm số y = 1 tại hai điểm phân biệt A và B. Tính độ dài đoạn thẳng AB
A. A B = 2 2
B. A B = 3
C. A B = 2
D. A B = 1
Tìm m để đường thẳng d : y = x - m cắt đồ thị hàm số ( C ) : y = x + 1 x - 1 tại hai điểm phân biệt A, B sao cho A B = 3 2
A. m = 2 và m = -2
B. m = 4 và m = -4
C. m = 1 và m = -1
D. m = 3 và m = -3
Cho hàm số y = 2 x + 1 x + 1 có đồ thị (C) và d : y = x + m . Giá trị của tham số m để d cắt (C) tại hai điểm phân biệt A; B sao cho tiếp tuyến tại A và B song song với nhau.
A. Không tồn tại.
B. m = 0
C. m = -3
D. m = 3
Cho hàm số y = 2 x + 1 x + 1 có đồ thị C và d: y= x+ m. Giá trị của tham số m để d cắt C tại hai điểm phân biệt A; B sao cho tiếp tuyến tại A và B song song với nhau.
A. m=6
B. m= 0
C. m= -3
D. Đáp án khác
Cho hai điểm A, B thuộc đồ thị hàm số y = - x 3 + 3 x + 2 C đối xứng nhau qua điểm I - 1 ; 3 . Tọa độ điểm A là
A. A 1 ; 4
B. A - 1 ; 0
C. Không tồn tại
D. A 0 ; 2