Cho hình vuông có O là tâm. Có bao nhiêu phép quay tâm O góc α ( 0 ≤ α ≤ π ) biến hình vuông trên thành chính nó?
A.1
B.2
C.3
D.4
Cho tam giác đều có O là tâm. Có bao nhiêu phép quay tâm O góc α ( 0 ≤ α ≤ π ) biến tam giác trên thành chính nó?
A.1
B.2
C.3
D.4
Cho hình chữ nhật có O là tâm đối xứng. Có bao nhiêu phép quay tâm O góc α
( 0 ≤ α ≤ π ) biến hình chữ nhật trên thành chính nó?
A.0
B.2
C.3
D.4
Số phát biểuđúng là:
1.Phép đối xứng qua điểm O là một phép dời hình.
2. Phép đối xứng qua điểm O là phép quay tâm O góc quay 180 °
3. Phép quay Q(O; α ) biến A thành M thì O cách đều A và M
4. Phép quay Q(O; α ) biến A thành M thì O thuộc đường tròn đường kính AM
5. Phép quay Q(O; α ) biến O thành chính nó
6.Phép quay Q(O; α ) biến (O;R) thành (O;2R)
7.Phép quay tâm O góc π 2 và phép quay tâm O góc 5 π 2 là hai phép quay giống nhau
A.4
B.5
C.6
D.7
Cho lục giác đều tâm O. Có bao nhiêu phép quay tâm O gócα ( π ≤ α ≤ 2 π ) biến lục giác trên thành chính nó?
A. 7
B. 6
C.3
D.4
Cho hình chữ nhật có O là tâm đối xứng. Hỏi có bao nhiêu phép quay tâm O góc α,0 < α < 2π, biến hình chữ nhật trên thành chính nó?
A. không có
B. một
C. hai
D. vô số
Cho hình chữ nhật có O là tâm đối xứng. Hỏi có bao nhiêu phép quay tâm O góc α,0 < α < 2π, biến hình chữ nhật trên thành chính nó?
A. không có
B. một
C. hai
D. vô số
Cho hai điểm phân biệt A, B và đường thẳng d. Hãy tìm một phép tịnh tiến, phép đối xứng trục, phép đối xứng tâm, phép quay, phép vị tự.
a. Biến A thành chính nó;
b. Biến A thành B;
c. Biến d thành chính nó.
Số phát biểuđúng:
1. Qua phép vị tự có tỉ số k ≠ 0 , đường thẳng đi qua tâm vị tự sẽ biến thành chính nó
2. Qua phép vị tự có tỉ số k ≠ 0 , đường tròn có tâm là tâm vị tự sẽ biến thành chính nó.
3. Qua phép vị tự có tỉ số k ≠ 1 , không có đường tròn nào biến thành chính nó.
4. Qua phép vị tự V(O;1), đường tròn tâm O sẽ biến thành chính nó.
5. Phép vị tự tỉ số k biến đường thẳng thành đường thẳng song song hoặc trùng với đường thẳng đó
6. Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng mà độ dài được nhân lên với hệ số k
7. Trong phép vị tự tâm O, tỉ số k, nếu k < 0 thì điểm M và ảnh của nó ở về hai phía đối với tâm O.
8. Mọi phép dời hình đều là phép đồng dạng với tỉ số k = 1
9. Phép hợp thành của một phép vị tự tỉ số k và một phép đối xứng tâm là phép đồng dạng tỉ số
10. Hai đường tròn bất kì luôn có phép vị tự biến đường này thành đường kia
11. Khi k = 1 , phép vị tự là phép đồng nhất
12. Phép vị tự biến tứ giác thành tứ giác bằng nó
13. Khi k = 1, phép đồng dạng là phép dời hình
14. Phép đối xứng tâm là phép đồng dạng tỉ số k = 1
A.9
B.10
C.11
D.12