Chứng minh nếu a, b, c# 0 thỏa mãn \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}thì\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Chứng minh rằng : nếu a , b , c khác 0 thỏa mãn :
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}\) thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
cho a ,b ,c khác 0 và
\(\frac{ab+bc}{2}=\frac{bc+ca}{3}=\frac{ca+ab}{4}\) chứng minh \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Cho a,b,c khác 0 . Chứng minh: (ab+ac)/2=(ba+bc)/3=(cb+ca)/4 thì a/3=b/5=c/15
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
CMR: Nếu a,b,c là các số khác 0 thoả mãn: \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)