Coi tích 3 số nguyên liên tiếp là \(a.\left(a+1\right).\left(a+2\right)\)
Chứng minh thứ nhất: Tích trên chia hết cho 2
*TH1: Nếu a chia hết cho 2\(\Rightarrow\)a+2 cũng chia hết cho 2\(\Rightarrow\)Tích trên chia hết cho 2
*TH2:Nếu a chia 2 dư 1\(\Rightarrow\)a+1 chia hết cho 2\(\Rightarrow\)Tích trên chia hết cho 2
\(\Rightarrow\)Tích trên luôn luôn chia hết cho 2 (1)
Chứng minh thứ 2: Tích trên chia hết cho 3
*TH1: a chia hết cho 3\(\Rightarrow\)Tích trên chia hết cho 3
*TH2: a chia 3 dư 1\(\Rightarrow\)a+2 chia hết cho 3\(\Rightarrow\)Tích trên chia hết cho 3
*TH3: a chia 3 dư 2\(\Rightarrow\)a+1 chia hết cho 3\(\Rightarrow\)Tích trên chia hết cho 3
\(\Rightarrow\)Tích trên luôn luôn chia hết cho 3 (2)
Từ (1) và (2) \(\Rightarrow\)Tích trên luôn chia hết cho 2 và 3. Mà ƯCLN(2;3)=1\(\Rightarrow\)Tích trên luôn chia hết cho 2 và 3 tức là tích trên luôn chia hết cho 2.3; hay luôn chia hết cho 6
Vây tích của 3 số nguyên liên tiếp luôn chia hết cho 6.
ta có trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chẵn
và có 1 số chia hết cho 3
Vì số chẵn là số chia hết cho 2 => tích của 1 số chẵn và 1 số chia hết cho 3 thì sẽ chia hết cho 6
vì số chẵn = 2 . a
số chia hết cho 3 = 3 . b
=> 3 . b x 2. a = 6 . a . b luôn luôn chia hết cho 6
(dpcm)
ta có trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chẵn(chia hết cho 2)
và có 1 số chia hết cho 3
mà 2 và 2 có ước chung bằng 1
=> một số chia hết cho 2 nhân với một số chia hết 3 thì sẽ luôn luôn chia hết cho 6