Cho \(\frac{a^2+b^2}{c^2+d^2}\) với a,b,c,d \(\ne\)0, \(c\ne\pm d\).CMR hoặc \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{d}=\frac{b}{c}\)
cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c,d\(\ne\)0;c\(\ne\pm\)d.CM \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Biết \(\frac{a^2+b^2}{c^2+d^2}=\frac{a\times b}{c\times d}\) với a,b,c,d \(\ne\)0. CM: \(\frac{a}{b}=\frac{c}{d}\)hoặc\(\frac{a}{b}=\frac{d}{c}\)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a,b,c khác 0;\(c\ne\pm d\).chứng minh rằng hoặc \(\frac{a}{b}=\frac{d}{c}\)hoặc
Biết \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d \(\ne\)0.CMR \(\frac{a}{b}=\frac{c}{d}\)hoặc \(\frac{a}{b}=\frac{d}{c}\)
Chứng minh rằng nếu \(\frac{a+b}{c+b}=\frac{c+d}{d+a}\)thì a=c hoặc a+b+c+d=0 ( với c,d khác 0)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)với a \(\ne\)0, b \(\ne\)0, c \(\ne\)0, d \(\ne\)0, a khác cộng trừ b, c khác cộng trừ d.
Chứng minh: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
CMR: nếu \(\frac{a}{b}\)=\(\frac{c}{d}\)\(\ne\)1 thì \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)(a,b,c,d\(\ne\)0)
Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) với a,b,c,d \(\ne\) 0 ; c \(\ne\) + d.
Chứng minh rằng hoặc \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)