CMR nếu a>b>c thì \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)
chứng minh rằng nếu a>b>c thì \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)
CMR nếu \(a>b>c\) thì \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1/2 và 2a+3b+4c=3
Tìm min P=\(\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)
Câu 1: Cho a,b,c là các số thực dương thỏa mãn abc≤1
Chứng minh rằng
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge a+b+c\)
Câu 2: chứng minh rằng nếu a>b>c thì \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)
Cho \(a,b,c>0\).Chứng minh \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
Cho ba số thực dương x,y,z thỏa mãn \(\frac{ac\left(b-1\right)}{b\left(a+c\right)}=\frac{4}{3}\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{2\left(a+b\right)^2}{2a+3b}+\frac{\left(b+2c\right)^2}{2b+c}+\frac{\left(2c+a\right)^2}{c+2a}\)