:\(\frac{1}{6}\)<\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+\(\frac{1}{7^2}\)+.....+\(\frac{1}{100^2}\)<\(\frac{1}{4}\)
=\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+\(\frac{1}{7^2}\)+.....+\(\frac{1}{100^2}\)<\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+.....+\(\frac{1}{99.100}\)
=\(\frac{1}{4}\)-\(\frac{1}{100}\)=\(\frac{24}{100}\)<\(\frac{25}{100}\)=\(\frac{1}{4}\)>\(\frac{20}{100}\)=\(\frac{1}{5}\)>\(\frac{1}{6}\)
Vậy \(\frac{1}{6}\)<\(\frac{1}{5}\)
:$\frac{1}{6}$16 <$\frac{1}{5^2}$152 +$\frac{1}{6^2}$162 +$\frac{1}{7^2}$172 +.....+$\frac{1}{100^2}$11002 <$\frac{1}{4}$14
=>$\frac{1}{5^2}$152 +$\frac{1}{6^2}$162 +$\frac{1}{7^2}$172 +.....+
=> bạn biết làm rồi nên thôi
=> nói thật ra là bí