Bạn tham khảo cách làm ở đây: https://olm.vn/hoi-dap/question/528628.html
Bạn tham khảo cách làm ở đây: https://olm.vn/hoi-dap/question/528628.html
CMR với mọi số tự nhiên n>2 thì :
a)\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{2}\)
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}\)<\(\frac{1}{4}\)
c)\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{\left(2n+1\right)^2}\right)\)<2
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...........+\frac{1}{\left(2n\right)^2}< 4\left(v\text{ới}n\in N;n\ge2\right)\)
Cho \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\left(n\in N,n.2\right)\)
Chứng minh A<1/4
\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.......+\frac{1}{\left(2n\right)^2}< 4\left(v\text{ới}n\in N;n\ge2\right)\)\(2\)
CMR:
1\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{1}{2}\left(n\in N;n>1\right)\)
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(G=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)\left(n-1\right).n}=\)
\(H=2+4+6+..+2n=\)
Bài 1 : Tính C= \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n-1}{n!}\)
Bài 2 : CMR D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 3: Cho biểu thức P=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
a) CMR : P= \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
b) Giải bài toán trên trog trường hợp tổng quát
Bài 4 : CMR: \(\forall n\in Z\left(n\ne0;n\ne1\right)\) thì Q= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\) không phải là số nguyên .
Bài 5 : CMR : S=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{200^2}< \frac{1}{2}\)
Tìm n biết
a) \(\frac{-32}{\left(-2\right)^n}\)= 4
b) \(\frac{8}{2^n}\)= 2
c) \(^{\left(\frac{1}{2}\right)^{2n-1}}\)= \(\frac{1}{8}\)
Tính :
1 + 3 + 5 + 7 + ... + (2n - 1) = 225
Giải :
Theo công thức tính dãy số , ta có :
\(\frac{\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}.\left[\left(2n-1\right)+1\right]}{2}=225\)
\(\frac{\left\{\left[2n-2\right]:2+1\right\}.2n}{2}=225\)
\(\left\{\left[2n-2\right]:2+1\right\}.n=450\)(Lượt giản thừa số 2)
\(\left\{\frac{2n-2}{2}+1\right\}.n=225\)
\(\left\{\frac{2n-2}{2}+\frac{2}{2}\right\}.n=225\)
\(\frac{2n-2+2}{2}.n=225\)
\(\frac{2n}{2}.n=225\)
\(n^2=225\)
\(\Rightarrow n=\sqrt{225}=15\)