n^5 - n = n ( n^4 - 1 ) = n ( n^2 - 1 ) (n^2 +1 ) = n (n-1) ( n+ 1) ( n^2 +1 )
vì n( n+ 1) là 2 số nguyên liên tiếp nên chia hết cho 2
vì n (n - 1 ) (n + 1 ) là 3 số nguyên liên tiếp nên chia hết cho 3
Có n^2 +1 chia hết cho 5
do đó n^5 - n chia hết cho 30
A = n⁵ - n
= n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (chia hết cho 6, vì chia hết cho 2, 3) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
{n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
{5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> A chia hết cho 5 (2)
(1)(2)=> A chia hết cho 30 do (5,6)=1 (đpcm)
A = n⁵ - n
= n.(n⁴ - 1)
= n.(n² + 1)(n² - 1)
= n.(n² + 1)(n - 1)(n + 1) (chia hết cho 6, vì chia hết cho 2, 3) (1)
= n.(n² - 4 + 5)(n - 1)(n + 1)
= n[(n-2)(n+2)+5](n - 1)(n + 1)
= [n(n-2)(n+2)+5n](n - 1)(n + 1)
= n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1)
{n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5
{5n(n - 1)(n + 1) chia hết cho 5
=> n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5
=> A chia hết cho 5 (2)
(1)(2)=> A chia hết cho 30 do (5,6)=1 (đpcm)