Chứng minh cái này thì đơn giản thôi!
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất:
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau)
=>(m/n)^2=2
=>m^2=2n^2
=>m^2 chia hết cho 2
=>m chia hết cho 2
Đặt m=2k (k thuộc Z)
=>(2k)^2=2n^2
=>2k^2=n^2
=> n^2 chia hết cho 2
=> n chia hết cho 2.
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.
mk nghĩ thế này
a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2
=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ
c) ta có: \(\sqrt{2}\) là số vô tỉ
mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ
=>đpcm
nha bạn
a, cần CM \(\sqrt{15}\)là số vô tỉ
giả sử \(\sqrt{15}\)là số hữu tỉ
Đặt \(\sqrt{15}=\frac{a}{b}\left(a,b\in N\right)\)với b\(\ne0\)và phân số\(\frac{a}{b}\) tối giản
Ta có 15=\(\left(\frac{a}{b}^2\right)=\frac{a^2}{b^2}\)
=> a2=15b2=3.5b2
=>a2\(⋮3\)
Mà 3 nguyên tố nên a\(⋮3\)
=>a2\(⋮3^2\)=> 15b2\(⋮3^2\) => \(5b^2⋮3\)
Vì 5 và 3 nguyên tố cùng nhau nên b2\(⋮3\Rightarrow b⋮3\)(3 là số nguyên tố)
Ta có a,b cùng chia hết cho 3 nên \(\frac{a}{b}\)ko tối giản trái với đk của giả sử
Vậy \(\sqrt{15}\)là số vô tỉ
phần b,c giống The Hell? What