Mk trả lời câu này nka
\(ầ^2+b^2+c^2+d^2\ge2\left(ab+cd\right)\)
Nhân hai vế bất phương trình với 4 ta được:
\(4a^2+4b^2+4c^2+4d^2\ge8\left(ab+cd\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2-8ab-8cd\ge0\)
\(\Leftrightarrow\left(4a^2-8ab+4b^2\right)+\left(4c^2-8cd+4d^2\right)\ge0\)
\(\Leftrightarrow\left(2a-2b\right)^2+\left(2c-2d\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2a-2b\right)^2\ge0\\\left(2c-2d\right)^2\ge0\end{cases}}\)\(\Leftrightarrow dpcm\)
dấu \("="\)xảy ra khi \(a=b=c=d\)
tk mk nka !11 chúc pạn học tốt !!1