TA CÓ 1/2^2=1/4
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
1/100^2<1/99.100
=>1/2^2+2/3^2+.....+1/100^2<1/1.2+1/2.3+..+1/99.100
=1-99/100=99/100<1
TA CÓ 1/2^2=1/4
1/3^2<1/2.3=1/2-1/3
1/4^2<1/3.4=1/3-1/4
1/100^2<1/99.100
=>1/2^2+2/3^2+.....+1/100^2<1/1.2+1/2.3+..+1/99.100
=1-99/100=99/100<1
c/m
a/
1/2!+2/3!+3/4!+...+99/100!<1
b/
1*2-1/2!+2*3-1/3!+3*4-1/4!+...+99*100-1/100!<2
1+ 1/2(1+2) + 1/3(1+2+3) +1/4(1+2+3+4) +....+1/100(1+2+3+..+100)
Ai giúp mk vs .....
Chứng minh rằng:
a) A=1/3+1/(3^2)+1/(3^3)+...+1/(3^99)<1/2
b) B=3/(1^2*2^2)+5/(2^2*3^2)+7/(3^2*4^2)+...+19/(9^2*10^2)<1
c) C=1/3+2/(3^2)+3/(3^3)+4/(3^4)+...+100/(3^100)<3/4
Tính tổng:
S = 1 + 1/2 . (1 + 2) + 1/3 . (1 + 2 + 3) + 1/4 . (1 + 2 + 3 + 4) + ... + 1/100 . (1 + 2 + 3 + ... + 99 + 100).
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
chứng tỏ rằng
C = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
D = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
TÍNH TỔNG:S=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/100(1+2+3+...+100)
các bạn cho mình xin cách giải mấy bài này với
1. tính A= (1+2+3+...+100)(1/3 - 1/5 - 1/7 - 1/9) [ cái này là tử nha ]
1/2 + 1/3 + 1/4 + ... + 1/100 [ cái này là mẫu ]
2 tính B= 1 + 1/2 x (1+2) + 1/3 x (1+2+3) + 1/4 x (1+2+3+4) + ... + 1/16 x (1+2+3+...+16)
3 tính C= 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
TÍNH F=(1-1/1+2)*(1-1/1+2+3)*(1-1/1+2+3+4)*..........*(1-1/1+2+3+4+.....+2006)
B=(100-1 mũ 2)*(100-2 mũ 2)***(100-50 mũ 2)
Chứng minh rằng:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)