Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Carthrine

Cmr:\(50< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100-1}}< 100\)

Jin Air
1 tháng 9 2016 lúc 10:15

Gọi biểu thức trên là A.

Chứng minh A > 50

\(A=1+\frac{1}{2}+\left(\frac{1}{2^1+1}+\frac{1}{2^2}\right)+\left(\frac{1}{2^2+1}+\frac{1}{6}+...+\frac{1}{2^3}\right)+...+\left(\frac{1}{^{2^{100-2}+1}}+...+\frac{1}{2^{100-1}}\right)\\ \)

\(A>1+\frac{1}{2}+\frac{1}{2^2}.2+\frac{1}{2^3}.2^2+...+\frac{1}{2^{100-1}}2^{100-2}\)

\(A>\left(\frac{1}{2}+\frac{1}{2}\right)+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)

\(< =>A>\frac{100}{2}=50\)

Chứng minh A<100

\(A=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+...+\frac{1}{7}\right)+....+\left(\frac{1}{2^{100-2}}+\frac{1}{2^{100-2}+1}+...+\frac{1}{2^{100-1}-1}\right)\)-\(\frac{1}{2^{100-1}}\)

\(A< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+...+\frac{1}{2^{100-2}}.2^{100-2}+\frac{1}{2^{100-1}}\)

\(A< 1+1+1+...+1+\frac{1}{2^{100-1}}\)

\(A< 1.99+\frac{1}{2^{100-1}}< 99+1=100\)

Trương Huy Tâm
1 tháng 9 2016 lúc 13:03

ta có : 1+1/2+1/3+....+1/2^100-1   

= 1/2x2 +1/3x2 +1/4x2 +...+ 1/2^100 x2

= 2x(1/2+1/3+1/4+...+1/2^100)      

=.................... làm đến đây mk tịt

TAMA KA LA
1 tháng 9 2016 lúc 13:06

mk có chacha

VẪN LÀ THẾ
1 tháng 9 2016 lúc 13:22

hơi khó ha


Các câu hỏi tương tự
To Kill A Mockingbird
Xem chi tiết
Nguyễn Thị Kim Anh
Xem chi tiết
duong minh duc
Xem chi tiết
Ngân Nguyễn
Xem chi tiết
Xem chi tiết
Hung Nguyen
Xem chi tiết
Trần Hà Mi
Xem chi tiết
Do minh linh trang
Xem chi tiết
dinamite tuan
Xem chi tiết