CMR:1/4^2+1/6^2+1/8^2+...+1^(2.n)^2<1/4
cmr n=1/4^2+1/6^2+1/8^2+...+1/2018^2<1
p= 2!/3!+2!/4!+2!/5!+.+2!/99<1
CMR :
a) N = 1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
b) P = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1 ( n thuộc N ; n lớn hơn hoặc bằng 3 )
CMR:
a, M= 1/2² + 1/3²+1/4²+...+1/2016² <1
b, N=1/4²+1/6²+1/8²+...+1/100² <1/4
c, P=2!/3!+2!/4!+2!/5!+...+2!/n! <1
CMR: \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)(n thuộc N , n lớn hơn bằng 2)
Cmr:
a)M=1/2^2+1/3^2+1/4^2+...+1/n^2<1 (neN;n>=2)
b)N=1/4^2+1/6^2+1/8^2+...+1/(2n)^2<1/4 (n€N,n>=2)
c)P=2!/3!+2!/4!+2!/5!+...+2!/n!<1 (n€N,n>=3)
CMR 1/4^2+1/6^2+1/8^2+...+1/(2n^2) <1/4
CMR: 1/4^2+1/6^2+1/8^2+...+1/(2n)^2<1/4
cmr:
1/4^2+1/6^2+1/8^2+....+1/(2n)^2<1/4