[1+2+2^2+2^3+2^4+2^5+2^6+2^7] chia hết cho 3
[1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11] chia hết cho 9
Cho A= 1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11. Chứng minh rằng A chia hết cho 9
Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n
Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7
Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27
Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12
Cmr : A chia hết cho 3 biest A = 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^10
help
Bài 1, Thực hiện phép tính
a. 100 - [ 75 -( 7 - 2 )^2]
b. (2^3 : 9^4 + 9^3 × 45) : (9^2 ×10 - 9^2)
c. (20 × 2^4 + 12 × 2^4 - 48 × 2^2) : 8^2
d. 25 × 8^3 - 23 × 8^3
e. 5^4 - 2 × 5^3
g. 600:{ 450 : [450 - (4 × 5^3 - 2^3 ×5^2)]}
Bài 2, Tìm x
x + 5 × 2 - ( 32 - 16 × 3 : 6 - 15 ) = 0
Bài 3,Tìm những số tự nhiên x để
a. [( x+2)^2 + 4 ] chia hết cho (x + 2 )
b. [( x + 15)^2 - 42 ] chia hết cho ( x + 15 )
4, Cho 3 số tự nhiên a,b,c . Trong đó a và b là các số khi chia cho 5 dư 3, còn c chia cho 5 dư 2
a, Chứng tỏ mỗi tổng ( hiệu sau )
a + b; b + c; a - b đều chia hết cho 5
b, Chứng tỏ mỗi tổng ( hiệu sau )
5, Chứng tỏ rằng
a, 8^10 - 8^9 - 8^8 chia hết cho 55
b, 7^6 - 7^5 - 7^4 chia hết cho 11
c, 81^7 - 27^9 - 9^3 chia hết cho 45
d, 10^9 + 10^8 + 10^7 chia hết cho 555
Chứng tỏ rằng :
a. ( 10^(0)+8:9
b. (1532+2001) chia hết cho 2
c. (10^(0)+5^(3) chia hết cho 3 và 9
d. (11^(1)+11^(2)+11^(3)+...+11^(7)+11^(8) chia hết cho 12
e. (7+7^(2)+7^(3)+7^(4) chia hết cho 50
f. (3+3^(2)+3^(3)+3^(4)+3^(5)+3^(6) chia hết cho 13
chứng minh C chia hết cho 5
C=2^0+2^1+2x(2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10)+2^11+2^12
\(choS=1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}+2^{11}\)
chứng tỏ rằng S chia hết cho 3
chứng minh (1+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10+2^11) chia het cho 9