\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). do đó :
\(x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz},y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz},z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)
suy ra : ( x - y ) ( y - z ) ( z - x ) = \(\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2y^2z^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=y=z\\x^2y^2z^2=1\Rightarrow xyz=\mp1\end{cases}}\)