\(x^2+5y^2-4xy+2x-10y+14\)
\(=\left(x^2+4y^2-4xy+2x-4y+1\right)+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Vì \(\hept{\begin{cases}\left(x-2y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0;\forall x,y\)
Vậy ...