\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\))
Vì (n-1)n(n+1) là tích của ba số tự nhiên liên tiếp nên tồn tại 1 bội của, 1 bội của 3
Mà ƯC(2,3)=1
Suy ra n^3-n chia hết cho 2*3=6
Ta có \(n^3-n=n.\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)
Vì \(n-1;n;n+1\)là 3 số nguyên liên tiếp
Suy ra \(\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3
Mặt khác\(n-1;n;n+1\)là 3 số nguyên liên tiếp suy ra có ít nhất một số chẵn
Do đó \(\left(n-1\right).n.\left(n+1\right)⋮2\)
Vì \(\text{Ư}CLN\left(2;3\right)=1\)suy ra \(\left(n-1\right).n.\left(n+1\right)⋮6\)
Khi đó \(n^3-n⋮6\)
Vậy....