có \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
=>`x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2>=0`
`<=>2x^2+2y^2+2z^2>=2xy+2yz+2zx`
`<=>x^2+y^2+z^2>=xy+yz+zx`
có \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{matrix}\right.\)
=>`x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2>=0`
`<=>2x^2+2y^2+2z^2>=2xy+2yz+2zx`
`<=>x^2+y^2+z^2>=xy+yz+zx`
Chứng minh rằng với mọi x, y, z ta có: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
CMR: Nếu với mọi số hữu tỉ x, y, z thỏa mãn hệ thức\(\left(x-y+z\right)^2=x^2-y^2+z^2\)thì \(\left(x-y+z\right)^n=x^n-y^n+z^n\)
Góc trả lời bài: Lần sau các em hỏi bài thì nên đăng câu hỏi lên nhé:):
Chứng minh mọi x, y, z dương ta có:
\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Cho \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(z+x\right)+\left(z+x\right)\left(x+y\right)\)
CMR : Nếu P=Q thì x=y=z
CMR,nếu
\(\left(\text{}x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)
thì \(x=y=z\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0.\)CMR biểu thức sau luôn âm với mọi x với x,y,z khác 0
\(A=\left(\frac{x^2+y^2}{x^2y^2}-\frac{1}{z^2}\right)\left(\frac{x^2+z^2}{x^2z^2}-\frac{1}{y^2}\right)\left(\frac{y^2+z^2}{y^2z^2}-\frac{1}{x^2}\right)\)
1. Cho a < b so sánh 2a và 2b + 1; -3a và -3b - 1
2. Cho a > b > 0 CMR \(\frac{1}{a}< \frac{1}{\text{b}}\)
3. CMR
a. \(\left(x+y\right)^2< 2.\left(x^2+y^2\right)\)
b. \(x^2+y^2+z^2+3\ge2.\left(x+y+z\right)\)
Mọi người giải hộ mình với ạ
Giải được câu nào cũng được :> thanks trước ạ
1.CMR:
a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
1.CMR:
a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)