ta có \(\frac{10n^2+9n+4}{20n^2+20n+9}\) là phân số tối giản khi
\(\left(10n^2+9n+4,20n^2+20n+9\right)=1\)
mà \(\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)=2n+1\)
\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(10n^2+9n+4,20n^2+20n+9\right)\)
mà \(\left(10n^2+9n+4\right)-\left(2n+1\right)\left(5n+2\right)=2\)
\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(2n+1,2\right)=1\)
Vậy \(\left(10n^2+9n+4,20n^2+20n+9\right)=1\) hay phân số đã cho là tối giản
Gọi \(ƯCLN\left(10n^2+9n+4;20n^2+20n+4\right)=d\)\(\left(d\ge1\right)\)
Ta có : \(\left(10n^2+9n+4\right)⋮d\)và \(\left(20n^2+20n+9\right)⋮d\)
Hay \(\left[2\left(10n^2+9n+4\right)+2n+1\right]⋮d\)
\(\Rightarrow\left(2n+1\right)⋮d\left(1\right)\)
Mặt khác : \(\left(10n^2+9n+4\right)⋮d\Rightarrow\left(10n^2+9n+2\right)+2⋮d\)\(\Rightarrow\left(5n+2\right)\left(2n+1\right)+2⋮d\)\(\)
Vì \(\left(2n+1\right)⋮d\Rightarrow\left(5n+2\right)\left(2n+1\right)⋮d\)
Mà \(\left(5n+2\right)\left(2n+1\right)+2⋮d\)
\(\Rightarrow2⋮d\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\). \(\Rightarrow\) ƯCLN (\(10n^2+9n+4;20n^2+20n+9\)) =1
\(\Rightarrow\)Phân số trên tối giản
\(\)