Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hồng Vân

CMR: với mọi số nguyên n thì n7-n chia hết cho 7

Nhóc_Siêu Phàm
28 tháng 11 2017 lúc 19:50

+ Với n = 0 thì n^7 - n = 0 chia hết cho 7 (đúng) 

+ Giả sử k^7 - k chia hết cho 7 với k > 1 

+ Ta cm : (k + 1)^7 - (k + 1) cũng chia hết cho 7 

Ta có : 
(k + 1)7 - (k + 1) = k7 + 7M + 1 - (k + 1) 

= k^7 - k + 7M chia hết cho 7 

Lê Hồng Vân
28 tháng 11 2017 lúc 19:52

K sai đâu ạ đề vốn vậy k sai đâu bn

Nhóc_Siêu Phàm
28 tháng 11 2017 lúc 19:58

Giải theo Fertma là được: 
- Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố 
Nên n^7 đồng dư n (mod 7) 
=> n^7 - n đồng dư 0 (mod 7) 
=> n^7 - n chia hết cho 7 
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm) 
+ n=0 => A(n)=0 chia hết cho 7 
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7 
+Với n=k+1 thì 
A(k+1)= (k+1)^7-(k+1) 
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1 
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) 
Do k^7-k chia hết cho 7 
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7 
Suy ra: A(k+1) chia hết cho 7 
Vậy: n^7 - n chia hết cho 7 
*Chú ý: A(k+1) nghĩ là biểu thức A có biến kà k+1 chứ ko phải là A nhân cho (k+1) nhé, tương tự A(n), A(k) cũng thế. 
Mình đã cố gắng nhưng có thể vẫn còn sai sót mong các bạn thông cảm. Chúc bạn vui vẻ ^^!!


Các câu hỏi tương tự
Nguyen Manh Duc
Xem chi tiết
linh nguyen
Xem chi tiết
Nguyễn Hải Thịnh
Xem chi tiết
Nguyễn Đình Toàn
Xem chi tiết
CoRoI
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Nguyễn Hà
Xem chi tiết
Nguyễn Tấn Phát
Xem chi tiết
Bùi Thị Tuyết
Xem chi tiết