\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ( đpcm )
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ( đpcm )
,Cho a/b=c/d CMR .Các tỉ lệ thức sau bằng nhau ( giả thiết các tỉ lệ thức đều có nghĩa )
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Còn cách CM nào khác cách này ko \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
CMR: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
chứng minh Từ \(\frac{a}{b}=\frac{c}{d}\left(\left(a-b\right)\ne0,\left(c-d\right)\ne0\right)\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
CMR Nếu \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\frac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)
giúp mình nhanh nha, mình đang cần gấp. Thanh you!
Tại Sao \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}\)
Từ tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\).Chứng minh các tỉ lệ thức sau:
1) \(\frac{a}{b}=\frac{a-c}{b-d}\)
2) \(\frac{a}{b}=\frac{c}{a}\Rightarrow\frac{a+b}{d}=\frac{c+d}{d}\)
Nếu \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+d}=\frac{c+d}{2d}\)
Cho hai số hữu tỉ \(\frac{a}{b},\frac{c}{d}\left(d,b>0\right)\)
CM\(\frac{a}{b}>\frac{c}{d}\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)
cho hai số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)(b > 0 : d >0 ) Chứng tỏ rằng :
a,\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow a\cdot d< b\cdot c\)
b, \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)