Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.
=> Hiệu cuả 2 số đó chia hết cho 41
=> ĐPCM
Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.
=> Hiệu cuả 2 số đó chia hết cho 41
=> ĐPCM
CMR: trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
CMR:trong 42 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho 41
cho 52 số tự nhiên bất kì ,CMR luôn tồn tại trong đó 2 số có tổng hoặc hiệu chia hết cho 100
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng hoặc hiệu chia hết cho 17
Bài 1 : Cho 7 số tự nhiên bất kì. CMR bao giờ cũng có thể chọn ra 2 số có hiệu chia hết cho 6
Bài 2 : CMR trong 6 số tự nhiên liên tiếp luôn tìm được hiệu 2 số chia hết cho 5
Bài 3 : Cho 3 số lẻ. CMR tồn tại 2 số có tổng và hiệu chia hết cho 8
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
trong n + 1 số tự nhiên bất kì luôn tồn tại 2 số có hiệu chia hết cho n
1.Chứng minh rằng trong 6 số tự nhiên bất kì luôn tồn tại 1 số chia hết cho 6 và vài số có tổng chia hết cho 6
2.Cho 21 số nguyên dương bất kì khác nhau không vượt quá 40 .Chứng minh ràng trong 21 số đó luôn tồn tại 2 số có tổng=41
Chứng minh rằng trong 10 số tự nhiên bất kì luôn tồn tại hai số có tổng và hiệu chia hết cho 17