Giải thích các bước giải:
Xét tam gíac ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< b+c2b+c2
CMTT: BD< a+c2a+c2 ; CE < a+b2a+b2
=>AM+BD+CE < a+b+c
Ta có BD+CE> 3232 a
CMTT ta có:AM+CE > 3232 b
AM+BD>3232 c
=>2(AM+BD+CE) > 3232 (a+b+c)
Do đó : AM+BD+CE > 3434 (a+b+c)