Gọi 5 số tự nhiên liên tiếp là a; a + 1; a + 2; a + 3; a + 4
=> Tích của chúng là a(a+1)(a+2)(a+3)(a+4)
Trong tích của 5 số tự nhiên liên tiếp có ít nhất tích 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp chia hết cho 8 nên => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8 (1)
Tích của 5 số tự nhiên liên tiếp thì luôn chia hết cho 5 (vì trong tích có ít nhất 1 số chia hết cho 5) => a(a+1)(a+2)(a+3)(a+4) chia hết cho 5 (2)
Trong tích của 5 số tự nhiên liên tiếp có tích của 3 STN liên tiếp. Tích của 3 STN liên tiếp thì chia hết cho 3 => a(a+1)(a+2)(a+3)(a+4) chia hết cho 3 (3)
Từ (1), (2), (3) và 8,3,5 là các số đôi một nguyên tố cùng nhau nền => a(a+1)(a+2)(a+3)(a+4) chia hết cho 8.5.3 = 120
Vậy tích 5 STN liên tiếp luôn chia hết cho 120.
Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4
\(\Rightarrow\)Tích của chúng là k(k+1)(k+2)(k+3)(k+4)
Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp \(⋮\)8\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮8\)(1)
Trong 5 số tự nhiên liên tiếp có ít nhất 1 số \(⋮5\)\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮5\) (2)
Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp\(⋮3\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮3\) (3)
Từ (1),(2),(3) và ƯCLN(3;5;8)=1\(\Rightarrow\)k(k+1)(k+2)(k+3)(k+4)\(⋮3.5.8\)=120
Vậy tích của 5 số tự nhiên liên tiếp \(⋮120\)
Hình như Lê Thị Minh tâm copy của Trâm Lê thì phải ý. Y chang luôn khác mỗi a vs k và chữ thì thành kí hiệu thôi
a phải thuộc N sao ,nếu a=0 thì tích 5 số đó =0
a phải thuộc N sao , nếu a = 0 thì ko đc
=>đề thiếu
các bạn cách này có được ko: trong tích của 5 stn liên tiếp có 1 số chia hết cho 4
1 số chia hết cho 5
1 số chia hết cho 6
mà 4,5,6 là các cặp số nguyên tố cùng nhau suy ra tích của 5 stn liên tiếp chia hết cho 4.5.6 hay tích của 5 stn liên tiếp chia hết cho 120Nguyễn Minh Ánh ngu thế . Chỉ có 1 cách làm thôi mà